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By Paul Cohen

How in-silico minds will accelerate science
ARTIFICIAL SCIENCE

Science has been a frontier for artificial intelligence (AI) since the 
1970s. The prevailing view was that AI should do what our most 
notable scientists do, so autonomous scientific discovery was 

the highest prize, and the prevailing methods of AI – various forms of 
generate-and-test – were presented as theories of the scientific discovery 
process1. For example, the DARPA-sponsored DENDRAL project generated 
graph models of molecules in organic chemistry and tested them against 
mass spectrometer data, and a later program called CONGEN was able 
to discover all chemical graphs that satisfy empirical constraints2. At 
roughly the same time, other researchers applied rudimentary data-mining 
heuristics to re-discover Kepler’s Law and other physical laws in data3.  

If these early efforts failed to convince us that AI could “do science,” it 
was probably because they did so little of what scientists do: They didn’t 
read the literature, go to seminars, discuss theories with colleagues, 
prepare samples, design and run experiments, clean noisy data, or test 
hypotheses. They focused on the “aha moment” of discovery, not on the 
daily work of science. 

Even now, the heroic theory of science, which holds that scientific 
discovery is the product of individual genius, influences discussions of 
AI approaches to science. For example, in 2014 Hiroaki Kitano, whose 
several research affiliations include president and CEO of Sony Computer 
Science Laboratories, proposed “a new grand challenge for AI: to develop 
an AI system that can make major scientific discoveries in biomedical 
sciences and that is worthy of a Nobel Prize.”4 In fact, to date no AI system 
can recognize a significant scientific result as such, and all “scientific 
discovery” systems are carefully managed by humans.

Instead of asking how humans can build AI machines capable of making 
scientific discoveries, it might be more productive to ask how machines can 
facilitate scientific discovery by humans5. This was the premise of DARPA’s 
Big Mechanism and World Modelers programs, which I had designed in 
my recent stint as a DARPA program manager to investigate if and how AI 
can accelerate science as well as create new opportunities for AI research.  

The Big Mechanism program was designed to develop technology to 
help humans build causal models of complicated systems. The program 

The technology of science is as old as science, itself. Astrolabes and microscopes, image-displaying 
tachistoscopes and gene sequencers, mass spectrometers and atomic clocks, molecular tweezers, 
and the gene-editing tool CRISPR have all accelerated science by making the invisible visible and the 
uncontrolled do our bidding. Compared with these physical technologies, information technologies 
for science do different work: They store and manipulate data, they automate tedious tasks, they fa-
cilitate replicability and sharing, they learn, and one day they will assist scientists as ably as a good 
graduate student.

The Big Mechanism program aims to develop technology to read research abstracts 
and papers to extract pieces of causal mechanisms, assemble these pieces into more 
complete causal models, and reason over these models to produce explanations. The 
domain of the program is cancer biology with an emphasis on signaling pathways. 
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Instead of asking how humans can build AI machines capable of making 
scientific discoveries, it might be more productive to ask how machines 
can facilitate scientific discovery by humans.

Joshua Lederberg inaugurates the Stanford University Medical Experimental 
Computer (SUMEX), a computer designed to encourage the application of artificial 
intelligence in medicine and to provide a computer facility for sharing and inter-
action among researchers nationwide. Lederberg was one of those who worked 
on the DENDRAL project, an early effort to use artificial intelligence to further the 
scientific process. INSET: Cover sheet of the Proposal for Continuation of the Stan-
ford Artificial Intelligence Project and the Heuristic DENDRAL Project (June 1969). 

focused on the complicated molecular interactions in cells that, when 
they go wrong, result in cancer. Cell-signaling pathways are sequences of 
protein-protein interactions that transmit information to the cell nucleus 
and determine cell fate. The literature on cell signaling is vast, and each 
paper describes just a few signaling interactions. So the Big Mechanism 
program developed technology to help scientists explain the effects of 
drugs on entire pathways. 

In an experiment in 2016, machines were able to explain 25 known drug-
pathway interactions. Given a previously published model of 336 relevant 
genes (each of which encodes a protein) the machines used natural-
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ES language-understanding technologies to discover and read 95,000 journal 
articles, from which they extracted nearly a million causal assertions about 
protein-protein interactions. These were filtered and assembled into a 
single plausible signaling model that not only simulated the dynamics of 
protein concentrations but also explained all the drug-protein interactions. 
Using cloud-computing clusters, the whole process took less than a day.

These results showed that machine reading and model-building can 
accelerate science in the sense that no human can do what the machines 
did: No one can read 95,000 journal articles or process a million assertions 
into a causal model that explains empirical results, even if they devoted 
years to the task. The machines worked alone, but researchers already are 
demonstrating more interactive versions of the technologies6.  

Perhaps the most significant contribution of the Big Mechanism program 
has been to subvert the dominant paradigm of Big Data with its emphasis 
on exploitable correlations. All other things being equal, scientists prefer 
causal, explanatory models to opaque, predictive models based on 
correlations. The Big Mechanism program – its name a poke in the eye of 
Big Data – showed that machines could build causal, mechanistic models 

The Australian government analyzed land use by integrating nine component 
models, but this effort took approximately one person-century to accomplish. 
Intelligent machine assistance could radically shorten the timeline for such a project. 

of cellular processes such as tumorigenesis. One day, perhaps, these 
technologies will lead to machine-assisted hypotheses of how to interrupt 
or enhance cellular processes. 

While causal knowledge is the highest prize in science, it is quite difficult 
to extract from data. Contrary to popular belief, it is probably possible to 
find causal relationships in correlational data, but the algorithms for doing 
so are computationally expensive and leave residual uncertainty about 
whether one thing truly causes another. In contrast, it is not very difficult 
to find assertions of causality in text. The linguistic constructions can be 
arcane (e.g., “mitogens stimulate cell division by inhibiting intracellular 
negative controls”), but researchers have been making steady progress 
toward extracting causality from text7. Eventually machines will read 
all of the causal assertions in the scientific literature and check them 
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Caption needed. 

DARPA’s World Modelers program intends to support people in assembling large, 
complicated workflows of many models in order to more quickly gain insight into 
problems such as food and energy insecurity.

against each other and against available data. Imagine machines that 
read millions of papers and find odd results that don’t fit the zeitgeist 
or don’t accord with data. Are they due to fraud or incompetence, or are 
they showing us something new and unexpected? Human scientists ask 
themselves these questions as they plod slowly through vast literatures; 
imagine how machines might accelerate the process. 
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source that provides this information. A good research assistant would 
think, hmmm, let’s use sales records to find home prices and drone-based 
imagery to identify the numbers of cars in driveways, and let’s put it all 
together with public tax records to estimate household income. Machines 
can’t do this task (i.e., they can’t invent proxies for missing data) unless 
they know what “income” means and know that other data are proportional 
to income. The techniques for developing and exploiting meta-data (the 
things we would like machines to know about data) are improving, but they 
have yet to incorporate semantically deep enough nuance for machines to 
invent proxies.

Gritty Engineering. Models often have parameters that represent local 
conditions. Crop models, for example, need data about soil quality, sunshine, 
water, and other factors. A good research assistant might integrate a crop 
model with a soil model, a hydrological model, and weather model. The 
challenges would include understanding the parameters of the models 
well enough to use the output of one model as input to another, either 
directly or following some transformation. As noted, this understanding 
might require more semantic depth than machines have, but even when 
semantic issues are solved, gritty engineering issues remain: If the models 
are linked, meaning that feedback loops exist between the processes they 
represent, then they should run in a single computational environment. 
But this can be difficult if they run at different time scales or require very 
different amounts of computation. The technology of scientific workflows 
is progressing rapidly, but it isn’t yet possible for machines, rather than 
humans, to build complicated workflows of many computational models. 

This sample of challenges should not discourage anyone from developing 
AI technology to enhance the work of scientists. Indeed, accelerating 
science is so important that it should motivate basic AI research on these 
and other challenges, as happened in the Big Mechanism and World 
Modelers programs mentioned earlier.  

The challenges of our century are systemic, but humans have difficulty 
modeling and managing systems. Whether we’re modeling the molecular 
signaling pathways in cancer, the diverse factors contributing to food 
insecurity, or policies for land use in Australia, we find ourselves struggling 
with complexity. We have no choice about whether to recruit AI technology 
to scientific research: We must do it because we can’t understand 
complicated, interacting systems without help. It is an added benefit that 
the vision of AI-accelerated science will drive AI research itself for years 
to come.

Food insecurity has many causes, from poor soil to political instability, from 
the El Niño cycle to economic migration. Scientists have been developing 
models of these individual elements for decades, but superhuman effort is 
required to link them together in a common software environment to study 
something like famine in sub-Saharan Africa. For example, the Australian 
government analyzed land use by integrating nine component models – of 
energy, water, and markets, among others – but this splendid effort took 
roughly one person-century of work8. The World Modelers program intends 
to accelerate this kind of analysis through intelligent machine assistance.

These examples suggest that AI will accelerate science in several 
ways, such as reading and assembling fragmentary results spread widely 
over literatures, integrating legacy models in common computational 
frameworks, automating in silico experiments, and even designing 
experiments and controlling the robots that carry them out. Much of this 
is “good old-fashioned AI,” not contemporary data science. At present, big 
data and machine learning play roles such as finding associations that 
might be causal (e.g., associations between genes and phenotypes) and 
learning computationally efficient approximations to expensive legacy 
models. But science depends on theories and data, and, importantly, on 
what people assert about theories and data in published literature. This 
suggests that future data-science technologies should expand their scope 
to embrace the interplay of theories, data, and literature. 

For all its promise, AI has yet to recreate even the intellectual functions 
of a good research assistant. Nor is it likely to unless it tackles some 
problems that are getting in the way. As we review some of these, it might 
seem incredible that they haven’t been solved, but AI is a field in which 
seemingly easy things can be very difficult.

What are all those things and processes? Scientists refer to things 
and processes by names such as “p53” and “desertification.” In general, 
one thing can have many names and many things can have the same 
name, and even if things and names were in one-to-one correspondence, 
machines won’t necessarily know anything about what a name denotes. For 
example, “EBF” and “breast feeding” are names for very similar processes 
(“EBF” stands for exclusive breast feeding), but machines can’t know this 
unless they have access to dictionaries or ontologies that map names to 
formal descriptions of things. One might hope that someone has specified 
that “breast feeding” means, well, breast feeding, while EBF means breast 
feeding exclusive of other kinds of feeding. Ontologies record this kind of 
information and some fields, such as biology, have excellent ontologies for 
genes, proteins, drugs, and so on, but in general, scientific fields are poorly 
ontologized. In short, machines don’t know what scientists are talking 
about. 

Coreference. Humans refer to the same things and processes in 
different ways, and machines have trouble figuring out coreferences, or 
repeated references to the same thing or processes. A paragraph might 
begin “The phosphorylation of ERK” and end with “active ERK,” but how 
are machines to know that phosphorylated ERK is often referred to as active 
ERK? How can machines know that “the first horse across the line” is “the 
winner”? The technology for dealing with coreference is improving, but 
every missed coreference is a lost opportunity for a machine to extend what 
it knows about a thing or process. 

Semantic depth. Even when machines know about things and processes, 
they generally don’t know much. Consequently, they can’t answer questions 
that require semantic depth or nuance. For example, suppose it is important 
to estimate the per-capita income in a neighborhood, but there is no data 
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